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1 Executive Summary

In 1992 Vapnik introduced the Support Vector Machine (SVM) as an innovative new
approach to predictor design. Since then SVMs have produced remarkable results on
a broad range of important problems in classification, regression, density estimation,
anomaly detection, and operator inversion. SVMs have a strong theoretical foundation
that directly addresses the two primary concerns of the practitioner; the generalization
performance of the predictor (i.e., its accuracy on future samples) and the computational
resources required to design and implement the predictor. In fact SVMs represent a
milestone for the general classification problem in that they are the first approach that
can produce predictors with guaranteed performance bounds in polynomial time. This
suggests that design algorithms for SVMs are more likely to scale successfully to large
problem sizes. However this success has not yet been fully realized. In fact a formal
framework for SVM algorithm development is still in its infancy. As a result, existing
algorithms suffer from many deficiencies; some are overly sensitive to the choice of arcane
parameters, others are plagued with convergence problems, and scaling them to large
problems has been achieved only in special cases. In addition the potential benefits
of parallelization have been completely ignored. Consequently, these algorithms are of
limited use to the general practitioner. We propose to develop a formal framework for
SVM algorithm design that addresses convergence to a solution, rate of convergence, and
algorithmic scaling issues. This framework will serve as a backdrop for the development,
analysis, and implementation of the first serial and parallel SVM algorithms with provable
convergence and scaling properties. These algorithms will be used to develop predictors for
problems in computer security and weapons non-proliferation, and to perform parameter
estimation for weapons design codes.

2 Background

SVMs have made their greatest impact in the problems of prediction and classification.
An example is illustrated in Figure 1. Here the goal is to predict the structural integrity of
a rigid body (e.g., a bridge, building, or nuclear weapon) based on its vibrational response
to an external stimulus. The predictor is designed using responses from structures with
known integrity, and evaluated according to its prediction accuracy on future structures.

More formally, let X denote the space of measurements and Y denote the space of
class labels. A concept ¢ is a function ¢ : X — Y that determines a label y for each
measurement x. A classifier h is a function A : X — Y that approximates the concept.
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Figure 1: A prediction problem for structural risk assessment.

One measure of how well h approximates ¢ is the generalization error, which is defined
as € = [}.(n)2c(x) P(¥)dT, where p(z) is a probability density. This is simply the average
rate at which A commits an error. Note that generalization error is a function of A
and both unknowns ¢ and p. The learning problem can be stated as follows: suppose
some unknown concept c is fired and suppose the measurements x are generated by an
unknown marginal distribution p(z). Given a set of N randomly generated samples S =
{(z1,¢(x1)), (22, c(x9)), ..., (xN,c(zN))}, generate a classifier h with small generalization
error. Note that there is no canonical way to generate such a classifier from example data.
It is common to seek a classifier that minimizes the error on the training samples, but
this approach often leads to a computationally intractable problem that, even if solved
exactly, may possess generalization bounds that suffer from the curse of dimensionality.
Support vector machines generate classifiers using a different empirical criterion based
on margin. This innovative approach not only leads to generalization bounds that are
independent of dimension (Vapnik’s original goal), but also to a computationally tractable
design problem.

SVMs combine margin optimization with kernel mappings, which we describe in turn.
Consider a linear classifier that separates the data as illustrated in Figure 2, where the
classifier is represented by the partition induced by the solid line. The margin is defined
as the distance of the closest sample to the decision boundary, and when maximized
on this data results in the classifier shown in Figure 3. Note that the maximal margin
classifier is uniquely determined by the closest samples (which are sketched with a larger
font in the figure). These samples are called support vectors, and represent the source
of the name for this technique. It has long been believed that maximizing the margin
improves generalization. Recent theoretical results show that margin not only controls
generalization, but does so independently of the dimension of the ambient space. This
represents a substantial improvement over existing generalization theory [9, 8].

Not all data is linearly separable like that in Figure 3, but non-separable data can
often be made separable by mapping to a higher dimensional space. This concept is



Figure 2: The margin of a linear classifier. Figure 3: Linear classifier with max-
imum margin.

illustrated in Figure 4 where the map is from two dimensions to three. SVMs often map

kernel

Figure 4: Achieving linear separability through a nonlinear mapping.

to extremely high dimensions (e.g. 10'?) in order to obtain a large margin. A potential
disadvantage of such a mapping is that calculations in this space may be computationally
prohibitive. However it can be shown that the only operation required by SVMs in the
mapped space is the inner product. Mappings for which the inner product between two
points in the image can be evaluated using a bivariate function on the original space are
known as kernel mappings. SVMs use kernel mappings to implement large margin linear
classifiers in extremely high dimensions while performing computations in the ambient
space.

Not all data is linearly separable, even in the mapped space, either because the data is
noisy (in which case separating the data would lead to overfitting) or the kernel map lacks
sufficient complexity. The practitioner requires a method that performs well whether the
data is separable or not. Fortunately, Bartlett has recently proven generalization bounds
for non-separable data that are still controlled by the margin and are still independent of
dimension [1]. More specifically, these bounds are in terms of a margin cut-off value and
the fraction of samples that fail to achieve this value. This has provided a foundation for
support vector machines for non-separable data. Indeed, Vapnik has proposed quadratic
programming (QP) formulations which admit polynomial time solutions for both the sep-
arable and non-separable case [3]. Consequently, SVMs represent a landmark technique
in that they are the first to produce predictors with guaranteed performance bounds in
polynomial time. In addition, since Vapnik’s formulation is the same for all kernel maps,



it allows the practitioner to use the same algorithms to design predictors from widely
different model classes.

To make SVMs practical we require robust algorithms with good scaling proper-
ties. Since the size of Vapnik’s QP formulations is equal to the number of data points,
large data sets render conventional QP solvers inadequate due to their enormous stor-
age requirements, and methods for decomposing the QP problem are required. Current
decompositions break the large QP problem into a sequence of smaller QP problems by
restricting them to subsets of the data [9, 5, 6, 7]. The key is to select subsets that
will guarantee progress toward the original problem solution at each step. However, the
development of current methods has proceeded without formal consideration of conver-
gence issues and has lead to algorithms which sometimes fail to converge, sometimes
converge incorrectly, and sometimes converge extremely slowly. For example we have
recently shown that the chunking algorithm of Vapnik [9], the decomposition algorithm
of Osuna [6], and the sequential minimal optimization algorithm of Platt [7] can all fail
to choose satisfactory subsets. Our analysis also shows how to correct the defects in
these algorithms, and provides the first rigorous bounds on rates of convergence for the
modified algorithms.

Although we have improved the state of existing algorithms, the basic strategies
employed by these algorithms are still quite primitive, and there is much work to be
done to optimize computational resources (i.e., time and space) as a function of the
problem size and characteristics. This work is essential if SVMs are to realize their true
scaling potential.

3 Proposed Work and Importance to LANL

We propose to develop a formal framework for the design of algorithms for support vector
machines that addresses convergence to a solution, rate of convergence, and algorithmic
scaling issues. This framework will use principles from optimization theory, probability
theory and the theory of computation to guide algorithm development. This framework
will serve as a basis for the development, analysis, and implementation of algorithms
with three major thrusts.

1. New serial algorithms for the QP formulation.
Our preliminary analysis points to new algorithms with superior convergence prop-
erties, and we intend to fully develop algorithms based on these ideas.

2. The first parallel algorithms for the QP formulation.
Recently it has been shown that certain QP problems are particularly well suited to
parallel implementation when the corresponding dual problem takes a special form
[2]. Tt appears that the dual of the SVM problem can be written in this form. If
successful, this approach will lead to the development of the first parallel learning
algorithms for SVMs, and as such will represent a significant contribution to the
scalability of these methods.



3. Algorithms based on new formulations of margin optimization.

In the separable case the QP problem posed by Vapnik represents an exact formu-
lation of the margin maximization problem. However, in the non-separable case,
Vapnik’s QP formulation is an extension of the separable case which represents an
approximation to the margin maximization problem. This may partially explain
why algorithms based on the QP formulation appear to scale well in the the sep-
arable case, but scale poorly in the non-separable case. We propose to develop an
alternate formulation of the margin maximization problem that is more represen-
tative of the non-separable case. To this end we have formulated an unconstrained
nonlinear programming problem with a continuous but non-differentiable criterion,
similar to that developed and analyzed in [4] for a different problem. Based on
the success in [4] we expect this approach to lead to simpler algorithms whose
convergence rates are much better for non-separable data.

Since the SVM framework can be used to solve problems in classification, regression,
density estimation, anomaly detection, and operator inversion, progress in the develop-
ment of algorithms for SVMs can be leveraged to address an impressive variety of tech-
nical problems. The algorithms developed under this LDRD will be applied to problems
in computer security, weapons non-proliferation, and parameter estimation for weapons
design codes. For example we describe the problem of detecting intrusions on a computer
network. A fundamental unit of computer activity is a connection between a user and
a computational resource. Information for representing a connection can be obtained
from the communication packets used in its establishment. To create a problem that
can be attacked scientifically, and whose results can be defended rigorously, a definition
of intrusion must be articulated. Having done so, data suitable for detector design may
be generated by security experts. DARPA has done this in its 1998 Intrusion Detection
Evaluation Program which collected data from a local area network simulating a typical
U.S. Air Force computing environment. In our recent case study with this data SVMs
were superior in many ways to a comprehensive collection of predictors. In particular it
provided the best combination of computational efficiency and guaranteed performance.
This suggests that the intrusion detection problem at LANL could benefit greatly from
the application of SVMs. Providing guaranteed performance bounds in this highly un-
certain problem domain would fulfill an important national security need.
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